Source code for appliedlife.IntegratedLife.ProductBase

"""Base projection logic for all products

The :mod:`~appliedlife.IntegratedLife.ProductBase` space
serves as the base space for concrete product spaces
defined in the :mod:`~appliedlife.IntegratedLife.Run` space.

This space defines main projection logic that is
common for all products.


.. seealso

    * :mod:`~appliedlife.IntegratedLife.Run.GMXB`
"""

from modelx.serialize.jsonvalues import *

_formula = None

_bases = []

_allow_none = None

_spaces = []

# ---------------------------------------------------------------------------
# Cells

[docs] def age(t): """The attained age at time t. Defined as:: age_at_entry() + duration(t) .. seealso:: * :func:`age_at_entry` * :func:`duration` """ return age_at_entry() + duration(t)
[docs] def age_at_entry(): """The age at entry of the model points The ``age_at_entry`` column of the DataFrame returned by :func:`model_point`. """ return model_point()["age_at_entry"].values
[docs] def asmp_id(): """Assumption ID""" return fixed_params()["asmp_id"]
[docs] def av_at(t, timing): """Account value in-force :func:`av_at(t, timing)<av_at>` calculates the total amount of account value at time ``t`` for the policies represented by a model point. At each ``t``, the events that change the account value balance occur in the following order: * Maturity * New business and premium payment * Fee deduction The second parameter ``timing`` takes a string to indicate the timing of the account value, which is either ``"BEF_MAT"``, ``"BEF_NB"`` or ``"BEF_FEE"``. .. rubric:: BEF_MAT The amount of account value before maturity, defined as:: av_pp_at(t, "BEF_PREM") * pols_if_at(t, "BEF_MAT") .. rubric:: BEF_NB The amount of account value before new business after maturity, defined as:: av_pp_at(t, "BEF_PREM") * pols_if_at(t, "BEF_NB") .. rubric:: BEF_FEE The amount of account value before lapse and death after new business, defined as:: av_pp_at(t, "BEF_FEE") * pols_if_at(t, "BEF_DECR") .. seealso:: * :func:`pols_if_at` * :func:`av_pp_at` """ if timing == "BEF_MAT": return av_pp_at(t, "BEF_PREM") * pols_if_at(t, "BEF_MAT") elif timing == "BEF_NB": return av_pp_at(t, "BEF_PREM") * pols_if_at(t, "BEF_NB") elif timing == "BEF_FEE": return av_pp_at(t, "BEF_FEE") * pols_if_at(t, "BEF_DECR") else: raise ValueError("invalid timing")
[docs] def av_change(t): """Change in account value Change in account value during each period, defined as:: av_at(t+1, 'BEF_MAT') - av_at(t, 'BEF_MAT') .. seealso:: * :func:`net_cf` """ return av_at(t+1, 'BEF_MAT') - av_at(t, 'BEF_MAT')
[docs] def av_pp_at(t, timing): """Account value per policy :func:`av_at(t, timing)<av_at>` calculates the total amount of account value at time ``t`` for the policies in-force. At each ``t``, the events that change the account value balance occur in the following order: * Premium payment * Fee deduction Investment income is assumed to be earned throughout each month, so at the middle of the month when death and lapse occur, half the investment income for the month is credited. The second parameter ``timing`` takes a string to indicate the timing of the account value, which is either ``"BEF_PREM"``, ``"BEF_FEE"``, ``"BEF_INV"`` or ``"MID_MTH"``. .. rubric:: BEF_PREM Account value before premium payment. At the start of the projection (i.e. when ``t=0``), the account value is set to :func:`av_pp_init`. .. rubric:: BEF_FEE Account value after premium payment before fee deduction .. rubric:: BEF_INV Account value after fee deduction before crediting investemnt return .. rubric:: MID_MTH Account value at middle of month (``t+0.5``) when half the investment retun for the month is credited .. seealso:: * :func:`av_pp_init` * :func:`inv_income_pp` * :func:`prem_to_av_pp` * :func:`maint_fee_pp` * :func:`coi_pp` * :func:`av_at` """ if timing == "BEF_PREM": if t == 0: return av_pp_init() else: return av_pp_at(t-1, "BEF_INV") + inv_income_pp(t-1) elif timing == "BEF_FEE": return av_pp_at(t, "BEF_PREM") + prem_to_av_pp(t) elif timing == "BEF_INV": return av_pp_at(t, "BEF_FEE") - maint_fee_pp(t) - coi_pp(t) elif timing == "MID_MTH": return av_pp_at(t, "BEF_INV") + 0.5 * inv_income_pp(t) else: raise ValueError("invalid timing")
[docs] def av_pp_init(): """Initial account value per policy For existing business at time ``0``, returns initial per-policy accout value read from the ``av_pp_init`` column in :func:`model_point`. For new business, 0 should be entered in the column. .. seealso:: * :func:`model_point` * :func:`av_pp_at` """ return model_point()["av_pp_init"].values
[docs] def base_lapse_rate(t): """Base lapse rate By default, the lapse rate assumption is defined by duration as:: max(0.1 - 0.01 * duration(t), 0.02) .. seealso:: :func:`duration` """ return asmp_data(asmp_id()).stacked_lapse_tables().reindex(lapse_rate_key(t)).values
[docs] def base_mort_rate(t): """Base mortality rate to be applied at time t Returns a Series of the mortality rates to be applied at time t. The index of the Series is ``point_id``, copied from :func:`model_point`. .. seealso:: * :func:`mort_table_reindexed` * :func:`mort_rate_mth` * :func:`model_point` """ return mort_data.unified_table().reindex( mort_rate_key(t) ).values
[docs] def check_av_roll_fwd(): """Check account value roll-forward Returns ``Ture`` if ``av_at(t+1, "BEF_NB")`` equates to the following expression for all ``t``, otherwise returns ``False``:: av_at(t, "BEF_MAT") + prem_to_av(t) - maint_fee(t) - coi(t) + inv_income(t) - claims_from_av(t, "DEATH") - claims_from_av(t, "LAPSE") - claims_from_av(t, "MATURITY")) .. seealso:: * :func:`av_at` * :func:`prem_to_av` * :func:`maint_fee` * :func:`coi` * :func:`inv_income` * :func:`claims_from_av` """ cols = [] for t in range(max_proj_len()): av = (av_at(t, "BEF_MAT") + prem_to_av(t) - maint_fee(t) - coi(t) + inv_income(t) - claims_from_av(t, "DEATH") - claims_from_av(t, "LAPSE") - claims_from_av(t, "MATURITY")) cols.append(av_at(t+1, "BEF_MAT") - av) return np.column_stack(cols)
[docs] def check_margin(): """Check consistency between net cashflow and margins Returns ``True`` if :func:`net_cf` equates to the sum of :func:`margin_expense` and :func:`margin_mortality` for all ``t``, otherwise, returns ``False``. .. seealso:: * :func:`net_cf` * :func:`margin_expense` * :func:`margin_mortality` """ cols = [] for t in range(max_proj_len()): cols.append(net_cf(t) - margin_expense(t) - margin_guarantee(t)) return np.column_stack(cols)
[docs] def check_pv_net_cf(): """Check present value summation Check if the present value of :func:`net_cf` matches the sum of the present values of each cashflow. Returns the check result as :obj:`True` or :obj:`False`. .. seealso:: * :func:`net_cf` * :func:`pv_net_cf` """ return pv_net_cf() - sum(net_cf(t) * disc_factors(t) for t in range(max_proj_len()))
[docs] def claim_net_pp(t, kind): """Per policy claim in excess of account value""" if kind == "DEATH": return claim_pp(t, "DEATH") - av_pp_at(t, "MID_MTH") elif kind == "LAPSE": return 0 elif kind == "MATURITY": return claim_pp(t, "MATURITY") - av_pp_at(t, "BEF_PREM") else: raise ValueError("invalid kind")
[docs] def claim_pp(t, kind): """Claim per policy The claim amount per policy. The second parameter is to indicate the type of the claim, and it takes a string, which is either ``"DEATH"``, ``"LAPSE"`` or ``"MATURITY"``. The death benefit as denoted by ``"DEATH"``, is the greater of :func:`sum_assured` and mid-month account value (:func:`av_pp_at(t, "MID_MTH")<av_pp_at>`). The surrender benefit as denoted by ``"LAPSE"`` and the maturity benefit as denoted by ``"MATURITY"`` are equal to the mid-month account value. .. seealso:: * :func:`sum_assured` * :func:`av_pp_at` """ if kind == "DEATH": return np.where(has_gmdb() == True, np.maximum(sum_assured(), av_pp_at(t, "MID_MTH")), av_pp_at(t, "MID_MTH")) # return np.maximum(sum_assured(), av_pp_at(t, "MID_MTH")) elif kind == "LAPSE": return av_pp_at(t, "MID_MTH") elif kind == "MATURITY": return np.where(has_gmab() == True, np.maximum(sum_assured(), av_pp_at(t, "BEF_PREM")), av_pp_at(t, "BEF_PREM")) else: raise ValueError("invalid kind")
[docs] def claims(t, kind=None): """Claims The claim amount during the period from ``t`` to ``t+1``. The optional second parameter is for indicating the type of the claim, and it takes a string, which is either ``"DEATH"``, ``"LAPSE"`` or ``"MATURITY"``, or defaults to ``None`` to indicate the total of all the types of claims during the period. The death benefit as denoted by ``"DEATH"`` is defined as:: claim_pp(t) * pols_death(t) The surrender benefit as denoted by ``"LAPSE"`` is defined as:: claims_from_av(t, "LAPSE") - surr_charge(t) The maturity benefit as denoted by ``"MATURITY"`` is defined as:: claims_from_av(t, "MATURITY") .. seealso:: * :func:`claim_pp` * :func:`pols_death` * :func:`claims_from_av` * :func:`surr_charge` """ if kind == "DEATH": return claim_pp(t, "DEATH") * pols_death(t) elif kind == "LAPSE": return claims_from_av(t, "LAPSE") - surr_charge(t) elif kind == "MATURITY": return claim_pp(t, "MATURITY") * pols_maturity(t) elif kind is None: return sum(claims(t, k) for k in ["DEATH", "LAPSE", "MATURITY"]) else: raise ValueError("invalid kind")
[docs] def claims_from_av(t, kind): """Account value taken out to pay claim The part of the claim amount that is paid from account value. The second parameter takes a string indicating the type of the claim, which is either ``"DEATH"``, ``"LAPSE"`` or ``"MATURITY"``. Death benefit is denoted by ``"DEATH"``, is defined as:: av_pp_at(t, "MID_MTH") * pols_death(t) When the account value is greater than the death benefit, the death benefit equates to the account value. Surrender benefit as denoted by ``"LAPSE"`` is defined as:: av_pp_at(t, "MID_MTH") * pols_lapse(t) As the surrender benefit is defined as account value less surrender charge, when there is no surrender charge the surrender benefit equates to the account value. Maturity benefit as denoted by ``"MATURITY"`` is defined as:: av_pp_at(t, "BEF_PREM") * pols_maturity(t) By default, the maturity benefit equates to the account value of maturing policies. .. seealso:: * :func:`av_pp_at` * :func:`pols_death` * :func:`pols_lapse` * :func:`pols_maturity` """ if kind == "DEATH": return av_pp_at(t, "MID_MTH") * pols_death(t) elif kind == "LAPSE": return av_pp_at(t, "MID_MTH") * pols_lapse(t) elif kind == "MATURITY": return av_pp_at(t, "BEF_PREM") * pols_maturity(t) else: raise ValueError("invalid kind")
[docs] def claims_over_av(t, kind): """Claim in excess of account value The amount of death benefits in excess of account value. :func:`coi` net of this amount represents mortality margin. .. seealso:: * :func:`margin_mortality` * :func:`coi` """ return claims(t, kind) - claims_from_av(t, kind)
[docs] def coi(t): """Cost of insurance charges The cost of insurance charges deducted from acccount values each period. .. seealso:: * :func:`pols_if_at` * :func:`coi_pp` """ return coi_pp(t) * pols_if_at(t, "BEF_DECR")
[docs] def coi_pp(t): """Cost of insurance charges per policy The cost of insurance charges per policy. Defined as the coi charge rate times net amount at risk per policy. .. seealso:: * :func:`coi` * :func:`coi_rate` * :func:`net_amt_at_risk` """ return coi_rate(t) * net_amt_at_risk(t)
[docs] def coi_rate(t): """Cost of insurance rate per account value The cost of insuranc rate per account value per month. By default, it is set to 1.1 times the monthly mortality rate. .. seealso:: * :func:`mort_rate_mth` * :func:`coi_pp` * :func:`coi_rate` """ return 0 #1.1 * mort_rate_mth(t)
[docs] def commission_rate(): """Commission rate""" return model_point()["commission_rate"].values
[docs] def commissions(t): """Commissions By default, 100% premiums for the first year, 0 otherwise. .. seealso:: * :func:`premiums` * :func:`duration` """ return commission_rate() * premiums(t)
[docs] def csv_pp(t): """Cash surrender value per policy""" return (1 - surr_charge_rate(t)) * av_pp_at(t, 'MID_MTH')
[docs] def date_id(): """Date ID""" return fixed_params()["date_id"]
[docs] def disc_factors(t): """Discount factors. Vector of the discount factors as a Numpy array. Used for calculating the present values of cashflows. .. seealso:: :func:`disc_rate_mth` """ # return np.array(list((1 + disc_rate_mth()[t])**(-t) for t in range(max_proj_len()))) return (1 + disc_rate_mth(t))**(-t)
[docs] def disc_rate(t): """Discount rate to be applied at time t""" scen = fixed_params()['sens_int_rate'] curr = fixed_params()['currency'] return scen_data(date_id(), scen).spot_rates().at[t//12, curr]
[docs] def disc_rate_mth(t): """Monthly discount rate Nummpy array of monthly discount rates from time 0 to :func:`max_proj_len` - 1 defined as:: (1 + disc_rate_ann)**(1/12) - 1 .. seealso:: :func:`disc_rate_ann` """ return (1 + disc_rate(t))**(1/12) - 1
[docs] def duration(t): """Duration of model points at ``t`` in years .. seealso:: :func:`duration_mth` """ return duration_mth(t) //12
[docs] def duration_mth(t): """Duration of model points at ``t`` in months Indicates how many months the policies have been in-force at ``t``. The initial values at time 0 are read from the ``duration_mth`` column in :attr:`model_point_table` through :func:`model_point`. Increments by 1 as ``t`` increments. Negative values of :func:`duration_mth` indicate future new business policies. For example, If the :func:`duration_mth` is -15 at time 0, the model point is issued at ``t=15``. .. seealso:: :func:`model_point` """ if t == 0: return duration_mth_init().values else: return duration_mth(t-1) + 1
[docs] def duration_mth_init(): """Initial duration in month""" date_start = fixed_params()["base_date"] + pd.Timedelta(days=1) entry_date = model_point()["entry_date"] return (date_start.year * 12 + date_start.month - entry_date.dt.year * 12 - entry_date.dt.month)
[docs] def dyn_lapse_factor(t): """Dynamic lapse factor""" min_ = np.minimum max_ = np.maximum def factor_DL001(itm): U = dyn_lapse_param()["U"].values L = dyn_lapse_param()["L"].values M = dyn_lapse_param()["M"].values D = dyn_lapse_param()["D"].values return min_(U, max_(L, 1 - M * (1/itm - D))) def factor_DL002(itm): Cap = dyn_lapse_param()["FactorCap"].values Floor = dyn_lapse_param()["FactorFloor"].values Y = dyn_lapse_param()["Y"].values Power = dyn_lapse_param()["Power"].values return min_(Cap, max_(Floor, Y * (itm**Power))) # return params formula = dyn_lapse_param()["formula_id"] itm = av_pp_at(t, "MID_MTH") / sum_assured() return np.where(formula == "DL001", factor_DL001(itm), np.where(formula == "DL002", factor_DL002(itm), np.nan))
[docs] def dyn_lapse_param(): """Dynamic lapse parameters""" return asmp_data(asmp_id()).dyn_lapse_params().reindex(model_point()["dyn_lapse_param_id"].values)
[docs] def excel_sample(point_id=1, scen=1): """Output sample cashflows to Excel""" import xlwings as xw xw.App().books[0].sheets[0]["A1"].value = df = result_sample(point_id, scen) return df
[docs] def expense_acq(): """Acquisition expense per policy""" return fixed_params()["expense_acq"]
[docs] def expense_maint(): """Annual maintenance expense per policy""" return fixed_params()["expense_maint"]
[docs] def expenses(t): """Expenses Expenses during the period from ``t`` to ``t+1`` defined as the sum of acquisition expenses and maintenance expenses. The acquisition expenses are modeled as :func:`expense_acq` times :func:`pols_new_biz`. The maintenance expenses are modeled as :func:`expense_maint` times :func:`inflation_factor` times :func:`pols_if_at` before decrement. .. seealso:: * :func:`expense_acq` * :func:`expense_maint` * :func:`inflation_factor` * :func:`pols_new_biz` * :func:`pols_if_at` """ return expense_acq() * pols_new_biz(t) \ + pols_if_at(t, "BEF_DECR") * expense_maint()/12 * inflation_factor(t)
[docs] def fixed_params(): """Fixed parameters""" params = base_data.param_list() const_param_names = (params[params["read_from"] == "CONST"]).index const_params = base_data.const_params()["value"].loc[const_param_names] run_param_names = (params[params["read_from"] == "RUN"]).index run_params = base_data.run_params().loc[run_id].loc[run_param_names] space_param_names = (params[params["read_from"] == "SPACE"]).index space_params = base_data.space_params().loc[_space._name].loc[space_param_names] return pd.concat([const_params, run_params, space_params])
[docs] def has_gmab(): """Whether GMAB is attached""" return model_point()["has_gmab"]
[docs] def has_gmdb(): """Whether GMDB is attached""" return model_point()["has_gmdb"]
[docs] def has_surr_charge(): """Whether surrender charge applies ``True`` if surrender charge on account value applies upon lapse, ``False`` if other wise. By default, the value is read from the ``has_surr_charge`` column in :func:`model_point`. .. seealso:: * :func:`model_point` """ return model_point()['has_surr_charge'].values
[docs] def inflation_factor(t): """The inflation factor at time t .. seealso:: * :func:`inflation_rate` """ return (1 + inflation_rate())**(t/12)
[docs] def inflation_rate(): """Inflation rate The inflation rate to be applied to the expense assumption. By defualt it is set to ``0.01``. .. seealso:: * :func:`inflation_factor` """ return 0.01
[docs] def inv_income(t): """Investment income on account value Investment income earned on account value during each period. For the plicies decreased by lapse and death, half the investment income is credited. .. seealso:: * :func:`inv_income_pp` * :func:`pols_if_at` * :func:`pols_death` * :func:`pols_lapse` """ return (inv_income_pp(t) * pols_if_at(t+1, "BEF_MAT") + 0.5 * inv_income_pp(t) * (pols_death(t) + pols_lapse(t)))
[docs] def inv_income_pp(t): """Investment income on account value per policy Investment income on account value defined as:: inv_return_mth(t) * av_pp_at(t, "BEF_INV") .. seealso:: * :func:`inv_return_mth` * :func:`av_pp_at` """ return inv_return_mth(t) * av_pp_at(t, "BEF_INV")
[docs] def inv_return_mth(t): """Rate of investment return Rate of monthly investment return for :attr:`scen_id` and ``t`` read from :func:`inv_return_table` .. seealso:: * :func:`inv_return_table` * :attr:`scen_id` """ sens = fixed_params()["sens_int_rate"] ret_t = scen_data(date_id(), sens).return_mth().loc(axis=0)[:, t] ret_t = pd.DataFrame( np.tile(ret_t.values, (len(model_point_table_ext()), 1)), index=model_point_index(), columns=ret_t.columns ) fund_indexer = ret_t.columns.get_indexer(model_point()['fund_index']) return ret_t.values[np.arange(len(ret_t)), fund_indexer]
[docs] def is_lapse_dynamic(): """Whether the lapse assumption is dynamic""" return fixed_params()["is_lapse_dynamic"]
[docs] def is_wl(): """Whether the model point is whole life ``True`` if the model point is whole life, ``False`` if other wise. By default, the value is read from the ``is_wl`` column in :func:`model_point`. This attribute is used to determin :func:`policy_term`. If ``True``, :func:`policy_term` is defined as :func:`mort_table_last_age` minus :func:`age_at_entry`. If ``False``, :func:`policy_term` is read from :func:`model_point`. .. seealso:: * :func:`model_point` """ return model_point()['is_wl'].values
[docs] def lapse_rate(t): """Lapse rate""" if is_lapse_dynamic(): floor = model_point()["dyn_lapse_floor"].values return np.maximum(floor, dyn_lapse_factor(t) * base_lapse_rate(t)) else: return base_lapse_rate(t)
[docs] def lapse_rate_key(t): """Index keys to retrieve lapse rates for time t""" duration_cap = asmp_data(asmp_id()).lapse_len() return pd.MultiIndex.from_arrays( [model_point()["lapse_id"], np.minimum(duration(t), duration_cap)], names = ["lapse_id", "duration"])
def load_prem_rate(): """Rate of premium loading This rate times :func:`premium_pp` is collected from each premium and the rest is added to the account value. By default, the value is read from the ``load_prem_rate`` column in :func:`model_point`. .. seealso:: * :func:`premium_pp` """ return model_point()['load_prem_rate'].values
[docs] def maint_fee(t): """Maintenance fee deducted from account value .. seealso:: * :func:`maint_fee_pp` """ return maint_fee_pp(t) * pols_if_at(t, "BEF_DECR")
[docs] def maint_fee_pp(t): """Maintenance fee per policy .. seealso:: * :func:`maint_fee_rate` * :func:`av_pp_at` """ return maint_fee_rate() / 12 * av_pp_at(t, "BEF_FEE")
[docs] def maint_fee_rate(): """Maintenance fee per account value The rate of maintenance fee on account value each month. Set to ``0.01 / 12`` by default. .. seealso:: * :func:`maint_fee` """ return model_point()["maint_fee_rate"].values
[docs] def margin_expense(t): """Expense margin Expense margin is defined as the sum of premium loading, surrender charge and maintenance fees net of commissions and expenses. The sum of the expense margin and mortality margin add up to the net cashflow. .. seealso:: * :func:`load_prem_rate` * :func:`premium_pp` * :func:`pols_if_at` * :func:`surr_charge` * :func:`maint_fee` * :func:`commissions` * :func:`expenses` * :func:`check_margin` """ return (load_prem_rate()* premium_pp(t) * pols_if_at(t, "BEF_DECR") + surr_charge(t) + maint_fee(t) - commissions(t) - expenses(t))
[docs] def margin_guarantee(t): """Mortality margin Mortality margin is defined :func:`coi` net of :func:`claims_over_av`. The sum of the expense margin and mortality margin add up to the net cashflow. .. seealso:: * :func:`coi` * :func:`claims_over_av` """ return coi(t) - claims_over_av(t, 'DEATH') - claims_over_av(t, 'MATURITY')
def max_proj_len(): """Maximum projection length""" return max(proj_len())
[docs] def model_point(): """Target model points Returns as a DataFrame the model points to be in the scope of calculation. By default, this Cells returns the entire :func:`model_point_table_ext` without change. :func:`model_point_table_ext` is the extended model point table, which extends :attr:`model_point_table` by joining the columns in :attr:`product_spec_table`. Do not directly refer to :attr:`model_point_table` in this formula. To select model points, change this formula so that this Cells returns a DataFrame that contains only the selected model points. Examples: To select only the model point 1:: def model_point(): return model_point_table_ext().loc[1:1] To select model points whose ages at entry are 40 or greater:: def model_point(): return model_point_table[model_point_table_ext()["age_at_entry"] >= 40] Note that the shape of the returned DataFrame must be the same as the original DataFrame, i.e. :func:`model_point_table_ext`. When selecting only one model point, make sure the returned object is a DataFrame, not a Series, as seen in the example above where ``model_point_table_ext().loc[1:1]`` is specified instead of ``model_point_table_ext().loc[1]``. Be careful not to accidentally change the original table held in :func:`model_point_table_ext`. .. seealso:: * :func:`model_point_table_ext` """ mps = model_point_table_ext() res = pd.DataFrame( np.repeat(mps.values, len(scen_index()), axis=0), index=model_point_index(), columns=mps.columns ) return res.astype(mps.dtypes)
[docs] def model_point_index(): """Index for model points""" mps = model_point_table_ext() return pd.MultiIndex.from_product( [mps.index, scen_index()], names = mps.index.names + scen_index().names )
[docs] def model_point_table_ext(): """Extended model point table Returns an extended :attr:`model_point_table` by joining :attr:`product_spec_table` on the ``spec_id`` column. .. seealso:: * :attr:`model_point_table` * :attr:`product_spec_table` """ mp_file_id = fixed_params()["mp_file_id"] return model_point_data(mp_file_id, _space._name).model_point_table_ext()
[docs] def mort_last_age(): """The last age of mortality tables""" return mort_data.table_last_age().reindex(mort_table_id()).values
[docs] def mort_rate(t): """Mortality rates for time t""" return mort_scalar(t) * base_mort_rate(t)
[docs] def mort_rate_key(t): """Index keys to retrieve mortality rates for time t""" duration_cap = mort_data.select_duration_len().reindex(mort_table_id()).values return pd.MultiIndex.from_arrays( [mort_table_id(), age(t), np.minimum(duration(t), duration_cap)], names = ["table_id", "att_age", "duration"])
[docs] def mort_rate_mth(t): """Monthly mortality rate to be applied at time t .. seealso:: * :attr:`mort_table` * :func:`mort_rate` """ return 1-(1- mort_rate(t))**(1/12)
def mort_scalar(t): """Lapse rate By default, the lapse rate assumption is defined by duration as:: max(0.1 - 0.01 * duration(t), 0.02) .. seealso:: :func:`duration` """ return asmp_data(asmp_id()).stacked_mort_scalar_tables().reindex(mort_scalar_key(t)).values def mort_scalar_key(t): """Index keys to retrieve mortality scalars for all model points at time t""" duration_cap = asmp_data(asmp_id()).mort_scalar_len() return pd.MultiIndex.from_arrays( [model_point()["mort_scalar_id"], np.minimum(duration(t), duration_cap)], names = ["mort_scalar_id", "duration"])
[docs] def mort_table_id(): """Mortality table IDs""" return np.where(model_point()["sex"] == "M", model_point()["mort_table_male"], model_point()["mort_table_female"])
[docs] def net_amt_at_risk(t): """Net amount at risk per policy Return sum assured net of account value per policy. .. seealso:: * :func:`sum_assured` * :func:`av_pp_at` """ return np.maximum(sum_assured() - av_pp_at(t, 'BEF_FEE'), 0)
[docs] def net_cf(t): """Net cashflow Net cashflow for the period from ``t`` to ``t+1`` defined as:: premiums(t) - claims(t) - expenses(t) - commissions(t) .. seealso:: * :func:`premiums` * :func:`claims` * :func:`expenses` * :func:`commissions` """ return (premiums(t) + inv_income(t) - claims(t) - expenses(t) - commissions(t) - av_change(t))
[docs] def policy_term(): """The policy term of the model points. The ``policy_term`` column of the DataFrame returned by :func:`model_point`. """ return (is_wl() * (mort_last_age() - age_at_entry()) + (is_wl() == False) * model_point()["policy_term"].values)
[docs] def pols_death(t): """Number of death Number of policies decreased by death between ``t`` and ``t+1`` """ return pols_if_at(t, "BEF_DECR") * mort_rate_mth(t)
[docs] def pols_if(t): """Number of policies in-force :func:`pols_if(t)<pols_if>` is an alias for :func:`pols_if_at(t, "BEF_MAT")<pols_if_at>`. .. seealso:: * :func:`pols_if_at` """ return pols_if_at(t, "BEF_MAT")
[docs] def pols_if_at(t, timing): """Number of policies in-force :func:`pols_if_at(t, timing)<pols_if_at>` calculates the number of policies in-force at time ``t``. The second parameter ``timing`` takes a string value to indicate the timing of in-force, which is either ``"BEF_MAT"``, ``"BEF_NB"`` or ``"BEF_DECR"``. .. rubric:: BEF_MAT The number of policies in-force before maturity after lapse and death. At time 0, the value is read from :func:`pols_if_init`. For time > 0, defined as:: pols_if_at(t-1, "BEF_DECR") - pols_lapse(t-1) - pols_death(t-1) .. rubric:: BEF_NB The number of policies in-force before new business after maturity. Defined as:: pols_if_at(t, "BEF_MAT") - pols_maturity(t) .. rubric:: BEF_DECR The number of policies in-force before lapse and death after new business. Defined as:: pols_if_at(t, "BEF_NB") + pols_new_biz(t) .. seealso:: * :func:`pols_if_init` * :func:`pols_lapse` * :func:`pols_death` * :func:`pols_maturity` * :func:`pols_new_biz` * :func:`pols_if` """ if timing == "BEF_MAT": if t == 0: return pols_if_init() else: return pols_if_at(t-1, "BEF_DECR") - pols_lapse(t-1) - pols_death(t-1) elif timing == "BEF_NB": return pols_if_at(t, "BEF_MAT") - pols_maturity(t) elif timing == "BEF_DECR": return pols_if_at(t, "BEF_NB") + pols_new_biz(t) else: raise ValueError("invalid timing")
[docs] def pols_if_init(): """Initial number of policies in-force Number of in-force policies at time 0 referenced from :func:`pols_if_at(0, "BEF_MAT")<pols_if_at>`. """ return model_point()["policy_count"].where(duration_mth(0) > 0, other=0).values
[docs] def pols_lapse(t): """Number of lapse Number of policies decreased by lapse during ``t`` and ``t+1``. .. seealso:: * :func:`pols_if_at` * :func:`lapse_rate` """ return (pols_if_at(t, "BEF_DECR") - pols_death(t)) * (1-(1 - lapse_rate(t))**(1/12))
[docs] def pols_maturity(t): """Number of maturing policies The policy maturity occurs when :func:`duration_mth` equals 12 times :func:`policy_term`. The amount is equal to :func:`pols_if_at(t, "BEF_MAT")<pols_if_at>`. otherwise ``0``. """ return (duration_mth(t) == policy_term() * 12) * pols_if_at(t, "BEF_MAT")
[docs] def pols_new_biz(t): """Number of new business policies The number of new business policies. The value :func:`duration_mth(0)<duration_mth>` for the selected model point is read from the ``policy_count`` column in :func:`model_point`. If the value is 0 or negative, the model point is new business at t=0 or at t when :func:`duration_mth(t)<duration_mth>` is 0, and the :func:`pols_new_biz(t)<pols_new_biz>` is read from the ``policy_count`` in :func:`model_point`. .. seealso:: * :func:`model_point` """ return model_point()['policy_count'].values * (duration_mth(t) == 0)
[docs] def prem_to_av(t): """Premium portion put in account value The amount of premiums net of loadings, which is put in the accoutn value. .. seealso:: * :func:`load_prem_rate` * :func:`premium_pp` * :func:`pols_if_at` """ return prem_to_av_pp(t) * pols_if_at(t, "BEF_DECR")
[docs] def prem_to_av_pp(t): """Per-policy premium portion put in the account value The amount of premium per policy net of loading, which is put in the accoutn value. .. seealso:: * :func:`load_prem_rate` * :func:`premium_pp` * :func:`pols_if_at` """ return (1 - load_prem_rate()) * premium_pp(t)
[docs] def premium_pp(t): """Premium amount per policy Single premium amount if :func:`premium_type` is ``"SINGLE"``, monthly premium amount if :func:`premium_type` is ``"LEVEL"``. .. seealso:: * :func:`premium_type` * :func:`sum_assured` * :func:`age_at_entry` * :func:`policy_term` """ return model_point()['premium_pp'].values * ( (premium_type() == 'SINGLE') & (duration_mth(t) == 0) | (premium_type() == 'LEVEL') & (duration_mth(t) < 12 * policy_term()))
[docs] def premium_type(): """Type of premium payment Returns a string indicating the payment type, which is either ``"LEVEL"`` if level payment, or ``"SINGLE"`` if single payment. """ return model_point()['premium_type'].values
def premiums(t): """Premium income Premium income during the period from ``t`` to ``t+1`` defined as:: premium_pp() * pols_if_at(t, "BEF_DECR") .. seealso:: * :func:`premium_pp` * :func:`pols_if_at` """ return premium_pp(t) * pols_if_at(t, "BEF_DECR")
[docs] def proj_len(): """Projection length in months :func:`proj_len` returns how many months the projection for each model point should be carried out for all the model point. Defined as:: np.maximum(12 * policy_term() - duration_mth(0) + 1, 0) Since this model carries out projections for all the model points simultaneously, the projections are actually carried out from 0 to :attr:`max_proj_len` for all the model points. .. seealso:: * :func:`policy_term` * :func:`duration_mth` * :attr:`max_proj_len` """ return np.maximum(12 * policy_term() - duration_mth(0) + 1, 0)
[docs] def pv_av_change(): """Present value of change in account value .. seealso:: * :func:`av_change` * :func:`disc_factors` * :func:`proj_len` """ return sum(av_change(t) * disc_factors(t) for t in range(max_proj_len()))
[docs] def pv_claims(kind=None): """Present value of claims See :func:`claims` for the parameter ``kind``. .. seealso:: * :func:`claims` * :func:`proj_len` * :func:`disc_factors` """ return sum(claims(t, kind) * disc_factors(t) for t in range(max_proj_len()))
[docs] def pv_claims_from_av(kind=None): """Present value of claims See :func:`claims` for the parameter ``kind``. .. seealso:: * :func:`claims` * :func:`proj_len` * :func:`disc_factors` """ return sum(claims_from_av(t, kind) * disc_factors(t) for t in range(max_proj_len()))
[docs] def pv_claims_over_av(kind=None): """Present value of claims See :func:`claims` for the parameter ``kind``. .. seealso:: * :func:`claims` * :func:`proj_len` * :func:`disc_factors` """ return sum(claims_over_av(t, kind) * disc_factors(t) for t in range(max_proj_len()))
[docs] def pv_commissions(): """Present value of commissions .. seealso:: * :func:`expenses` * :func:`proj_len` * :func:`disc_factors` """ return sum(commissions(t) * disc_factors(t) for t in range(max_proj_len()))
[docs] def pv_expenses(): """Present value of expenses .. seealso:: * :func:`expenses` * :func:`proj_len` * :func:`disc_factors` """ return sum(expenses(t) * disc_factors(t) for t in range(max_proj_len()))
[docs] def pv_inv_income(): """Present value of investment income The discounted sum of monthly investment income. .. seealso:: * :func:`inv_income` * :func:`proj_len` * :func:`disc_factors` """ return sum(inv_income(t) * disc_factors(t) for t in range(max_proj_len()))
[docs] def pv_maint_fee(): """Present value of maintenance fees""" return sum(maint_fee(t) * disc_factors(t) for t in range(max_proj_len()))
[docs] def pv_net_cf(): """Present value of net cashflows. Defined as:: pv_premiums() + pv_inv_income() - pv_claims() - pv_expenses() - pv_commissions() - pv_av_change() .. seealso:: * :func:`pv_premiums` * :func:`pv_claims` * :func:`pv_expenses` * :func:`pv_commissions` """ return (pv_premiums() + pv_inv_income() - pv_claims() - pv_expenses() - pv_commissions() - pv_av_change())
[docs] def pv_pols_if(): """Present value of policies in-force .. note:: This cells is not used by default. The discounted sum of the number of in-force policies at each month. It is used as the annuity factor for calculating :func:`net_premium_pp`. """ return sum(pols_if_at(t, "BEF_DECR") * disc_factors(t) for t in range(max_proj_len()))
[docs] def pv_premiums(): """Present value of premiums .. seealso:: * :func:`premiums` * :func:`proj_len` * :func:`disc_factors` """ return sum(premiums(t) * disc_factors(t) for t in range(max_proj_len()))
[docs] def result_cf(): """Result table of cashflows .. seealso:: * :func:`premiums` * :func:`claims` * :func:`expenses` * :func:`commissions` * :func:`net_cf` """ t_len = range(max_proj_len()) data = { "Premiums": [sum(premiums(t)) for t in t_len], "Claims": [sum(claims(t)) for t in t_len], "Expenses": [sum(expenses(t)) for t in t_len], "Commissions": [sum(commissions(t)) for t in t_len], "Net Cashflow": [sum(net_cf(t)) for t in t_len] } return pd.DataFrame(data, index=t_len)
[docs] def result_pols(): """Result table of policy decrement .. seealso:: * :func:`pols_if` * :func:`pols_maturity` * :func:`pols_new_biz` * :func:`pols_death` * :func:`pols_lapse` """ t_len = range(max_proj_len()) data = { "pols_if": [sum(pols_if(t)) for t in t_len], "pols_maturity": [sum(pols_maturity(t)) for t in t_len], "pols_new_biz": [sum(pols_new_biz(t)) for t in t_len], "pols_death": [sum(pols_death(t)) for t in t_len], "pols_lapse": [sum(pols_lapse(t)) for t in t_len] } return pd.DataFrame(data, index=t_len)
[docs] def result_pv(): """Result table of present value of cashflows .. seealso:: * :func:`pv_premiums` * :func:`pv_claims` * :func:`pv_expenses` * :func:`pv_commissions` * :func:`pv_net_cf` """ data = { "Premiums": pv_premiums(), "Death": pv_claims("DEATH"), "Surrender": pv_claims("LAPSE"), "Maturity": pv_claims("MATURITY"), "Expenses": pv_expenses(), "Commissions": pv_commissions(), "Investment Income": pv_inv_income(), "Change in AV": pv_av_change(), "Net Cashflow": pv_net_cf() } return pd.DataFrame(data, index=model_point().index)
[docs] def result_sample(point_id=1, scen=1): """Sample projection result for a specific model point and scenario""" items = [ # Cashflows "premiums", "inv_income", "claims", ["claims", "DEATH"], ["claims", "LAPSE"], ["claims", "MATURITY"], "expenses", "commissions", "av_change", "net_cf", "blank", # Margin Analysis # Account Value Roll-forward ["av_at", "BEF_MAT"], "prem_to_av", "maint_fee", "coi", "inv_income", ["claims_from_av", "DEATH"], ["claims_from_av", "LAPSE"], ["claims_from_av", "MATURITY"], "blank", # Per policy Values ["av_pp_at", "BEF_PREM"], "premiums", "inv_income_pp", ["claim_pp", "DEATH"], ["claim_pp", "LAPSE"], ["claim_pp", "MATURITY"], "blank", # Policy Decrement "pols_if", "pols_maturity", "pols_new_biz", "pols_death", "pols_lapse", "mort_rate", "lapse_rate", "dyn_lapse_factor", "blank", # Economic assumptions "inv_return_mth", "disc_rate_mth" ] iloc = model_point_index().get_loc((point_id, scen)) t_len = proj_len()[iloc] data = {} for item in items: if isinstance(item, str): name, args = item, () else: name, args = item[0], item[1:] key = name + (("_" + "_".join(map(str, args))) if args else "") if key == "blank": val = [np.nan] * t_len else: cells = _space._cells[name] if isinstance(cells(0, *args), (np.ndarray, pd.Series)): val = [cells(t, *args)[iloc] for t in range(t_len)] else: val = [cells(t, *args) for t in range(t_len)] i=2 key0 = key while key in data: key = f"{key0}({i})" i += 1 data[key] = val return pd.DataFrame(data, index=range(t_len))
[docs] def scen_index(): sens = fixed_params()["sens_int_rate"] return scen_data(date_id(), sens).return_mth().loc(axis=0)[:, 0].index.get_level_values('scen')
[docs] def sex(): """The sex of the model points .. note:: This cells is not used by default. The ``sex`` column of the DataFrame returned by :func:`model_point`. """ return model_point()["sex"].values
[docs] def sum_assured(): """The sum assured of the model points The ``sum_assured`` column of the DataFrame returned by :func:`model_point`. """ return model_point()['sum_assured'].values
[docs] def surr_charge(t): """Surrender charge Surrender charge rate times account values of lapsed policies .. seealso:: * :func:`surr_charge_rate` * :func:`av_pp_at` * :func:`pols_lapse` * :func:`proj_len` * :func:`disc_factors` """ return surr_charge_rate(t) * av_pp_at(t, "MID_MTH") * pols_lapse(t)
[docs] def surr_charge_id(): """ID of surrender charge pattern A string to indicate the ID of the surrender charge pattern. The ID should be one of the column names in :attr:`surr_charge_table` if :func:`has_surr_charge` is ``True``. .. seealso:: * :attr:`surr_charge_table` * :func:`has_surr_charge` """ return model_point()['surr_charge_id']
[docs] def surr_charge_key(t): """Index keys to retrieve surrender charge rates at time t""" duration_cap = base_data.surr_charge_len() return pd.MultiIndex.from_arrays( [surr_charge_id(), np.minimum(duration(t), duration_cap)], names=["surr_charge_id", "duration"])
[docs] def surr_charge_rate(t): """Surrender charge rate Surrender charge rate to be applied for lapsed policies .. seealso:: * :func:`surr_charge_rate` * :func:`av_pp_at` * :func:`pols_lapse` * :func:`proj_len` * :func:`disc_factors` * :func:`surr_charge_max_idx` * :func:`surr_charge_table_stacked` """ return base_data.stacked_surr_charge_tables().reindex( surr_charge_key(t), fill_value=0).set_axis( model_point().index).values
# --------------------------------------------------------------------------- # References base_data = ("Interface", ("..", "BaseData"), "auto") model_point_data = ("Interface", ("..", "ModelPoints"), "auto") scen_data = ("Interface", ("..", "Scenarios"), "auto") mort_data = ("Interface", ("..", "Mortality"), "auto") asmp_data = ("Interface", ("..", "Assumptions"), "auto")