Source code for economic_curves.stationary_bootstrap.StationaryBootstrap
import numpy as np
[docs]
def StationaryBootstrap(data: np.ndarray, m, sampleLength)-> np.ndarray:
"""Returns a bootstraped sample of the time-series "data" of length "sampleLength.
The algorithm used is stationary bootstrap from 1994 Politis & Romano.
Args:
data: ndarray array. A single vector of numbers containing the time-series.
m: floating number. Parameter to stationary bootstrap indicating the average length of each block in the sample.
sampleLength: integer. Length of the bootstrapped sample returned as output.
Returns:
sample: ndarray array containing the final bootstraped sample.
Example:
>>> import numpy as np
>>> data = np.array([1,2,3,4,5,6,7,8,9,10])
>>> m = 4
>>> sampleLength = 12
>>> StationaryBootstrap(data, m, sampleLength)
array([[9.],
[3.],
[4.],
[5.],
[6.],
[7.],
[8.],
[7.],
[2.],
[3.],
[4.],
[2.]])
Original paper about stationary bootstrap:
Dimitris N. Politis & Joseph P. Romano (1994) The Stationary Bootstrap, Journal of the American Statistical
Association, 89:428, 1303-1313, DOI: 10.1080/01621459.1994.10476870
Implemented by Gregor Fabjan from Qnity Consultants on 12/11/2021.
"""
accept = 1/m
lenData = data.shape[0]
sampleIndex = np.random.randint(0,high =lenData,size=1);
sample = np.zeros((sampleLength,1))
for iSample in range(sampleLength):
if np.random.uniform(0,1,1)>=accept:
sampleIndex += 1
if sampleIndex >= lenData:
sampleIndex=0
else:
sampleIndex = np.random.randint(0,high = lenData,size=1)
sample[iSample,0] = data[sampleIndex]
return sample